Evaluation of ASCAT-derived near-surface soil moisture by assimilation into the SIM model

Clara Draper

Météo-France / CNRM, Toulouse, France EUMETSAT H-SAF on Support to Operational Hydrology and Water Management

with J-F Mahfouf, J-C Calvet, E Martin

15 March 2011, GSFC

ASCAT on MetOp

ASCAT:

- ► Real-aperture backscatter radar: C-band (5.255 GHz)
- MetOp launched late 2006 (data available from 2007)
- ightharpoonup Observes $\sim 80\%$ of the globe each day (two overpasses)
- ▶ 0.25° resolution

Soil moisture retrievals:

- ▶ Change detection approach, from TU-Wien (Wagner et al, 1999)
- Surface Degree of Saturation:
 - ► SDS= $(\theta \theta_{min})/(\theta_{max} \theta_{min})$
- lacktriangle Near-surface observation only, ~ 1 cm
- Operationally supported via EUMETCAST
 - Assimilated into ECMWF's IFS

Evaluating the ASCAT SDS

- Comparison to in situ observations from SMOSMANIA
- Comparison to soil moisture from the SIM modeling suite over France
 - ▶ SAFRAN: atmospheric analysis − > forcing for ISBA
 - ► ISBA: land-surface model > surface energy and moisture fluxes
 - ► MODCOU hydrogeological model -> routes moisture fluxes through river network
- Assimilation into SIM
 - Assimilate into near-real time SIM chain
 - Assess against delayed cut-off SIM chain (3000 additional observing stations)
 - More accurate SAFRAN forcing -> more accurate surface hydrology
 - Test impact on simulations of soil moisture, fluxes, and river discharge

SMOSMANIA monitoring network

Timeseries at SMOSMANIA sites

SDS (% of saturation) from in situ (black), SIM (red), ASCAT (blue)

SMOSMANIA statistics

		SIM	/	ASCAT /			ASCAT /		
	SMOSMÁNIA			SMOSMANIA			SIM		
	r _{abs}	r _{anm}	RMSD	r _{abs}	r _{anm}	RMSD	r _{abs}	r _{anm}	RMSD
			(%)			(%)			(%)
SBR	0.81	0.72	19.0	0.73	0.65	31.2	0.74	0.71	25.5
URG	0.67	0.68	23.7	0.83	0.74	22.0	0.79	0.68	17.5
CRD	0.72	0.56	25.2	0.78	0.59	27.1	0.84	0.71	16.2
PRG	0.67	0.43	21.9	0.70	0.57	21.6	0.78	0.72	19.8
CDM	0.74	0.57	19.6	0.63	0.62	26.5	0.75	0.76	20.8
LHS	0.70	0.43	22.4	0.65	0.56	25.9	0.68	0.72	23.4
SVN	0.71	0.56	22.1	0.70	0.58	22.4	0.77	0.72	18.7
MNT	0.62	0.56	24.0	0.62	0.58	27.3	0.71	0.66	21.7
SFL	0.73	0.47	20.4	0.60	0.53	28.9	0.70	0.68	23.9
MTM	0.61	0.54	31.2	0.35	0.35	40.1	0.35	0.35	25.5
LZC	0.73	0.69	18.4	0.78	0.78	16.4	0.73	0.66	19.6
NBN	0.66	0.56	20.3	0.68	0.61	26.2	0.75	0.68	19.7

 r_{abs} - absolute correlation

 r_{anm} - anomaly correlation (relative to 31-day moving average)

RMSD - Root Mean Square Difference

SIM & ASCAT correlations

SIM & ASCAT abs. values (m^3m^{-3})

Assimilation of ASCAT into SIM

Interactions between Surface, Biosphere, and Atmosphere (ISBA)

► Three-layer force-restore model:

- w_1 near-surface soil moisture bare soil evap., ~ 1 cm
- w_2 root-zone soil moisture transpiration, ~ 0.5 -2 m
- w_3 deep-layer soil moisture deep layer storage, $\sim 1\text{--}3$ m

- ▶ Observations: $\mathbf{y} = [w_1]$
- ▶ Update vector: $\mathbf{x} = [w_1, w_2]$

The Simplified EKF (1-D)

State forecast:

$$\mathbf{x}^b(t_i) = \mathcal{M}_{i-1}[\mathbf{x}^a(t_{i-1})]$$

State update:

$$\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{b}(t_{i}) + \mathbf{K}_{i} \left(\mathbf{y}_{i}^{o} - \mathcal{H}_{i}[\mathbf{x}^{b}(t_{i})]\right)$$

Kalman gain:

$$\mathbf{K}_{i} = \mathbf{P}_{0}\mathbf{H}_{i}^{T} \left(\mathbf{H}_{i}\mathbf{P}_{0}\mathbf{H}_{i}^{T} + \mathbf{R}_{i}\right)^{-1}$$

 \mathbf{x}^a - analyzed state vector

 \mathbf{x}^b - background state vector

 \mathbf{y}^o - observation vector

 \mathbf{P}_0 - model background error matrix

R - observation error matrix

$$\mathcal{H}$$
 (**H**) - obs. operator (linearized) \mathcal{H} is a 24 hour ISBA forecast

Assimilation experiments

- Assimilate ASCAT SDS from January 2007 May 2010 (SIM_ASCAT)
 - Used descending (early morning) overpass only
 - ► CDF-match ASCAT to SIM climatology (3.5 years)
- Assimilate into near-real time chain (SIM_NRT)
- Assess against delayed cut-off (climatological) chain (SIM_DEL)

Difference in w₂ from SIM_NRT & SIM_DEL

- ► Temporal behavior is very similar
- ▶ Very difficult for the assimilation to improve

Difference in w₂ from SIM_NRT & SIM_DEL

- Substantial negative bias in SIM_NRT w₂
- Associated with precipitation bias
- Can assimilation correct this?

Impact on w₂

Impact on bias

► Mean bias is reduced from -0.11 to -0.10 mm net reduction: 94% of grid-cells with ASCAT data

▶ Mean bias is reduced from -13.3 to -7.9 mm net reduction at 89% of grids-cells with ASCAT data

Impact on RMSD

▶ Mean reduced from 0.283 to 0.279 mm reduction at 71% of grid-cells with ASCAT data

▶ Mean reduced from 18.1 to 17.6 mm reduction at 69% of grid-cells with ASCAT data

Impact on surface water balance

Water balance terms (mm/month) Difference from SIM_DEL (mm/month)

SIM_DEL (black), SIM_NRT (red), SIM_ASCAT (blue)

Impact on river discharge

Discharge $(m^3 day^{-1})$ from SIM_DEL (black), SIM_NRT (red), SIM_ASCAT (blue)

Discharge Ratio

- $ightharpoonup Ratio = Q_{sim}/Q_{ref}$
- Mean increased from 0.68 to 0.76
- ► Error in ratio decreased at 88% of stations

Nash-Sutcliffe Efficiency

- $\begin{array}{l} E = \\ 1 \frac{\sigma_{t=1}^{T} (Q_{sim}^{t} Q_{ref}^{t})^{2}}{\sigma_{t=1}^{T} (Q_{ref}^{t} \bar{Q}_{ref}^{t})^{2}} \end{array}$
- ► Mean increased from 0.62 to 0.68
- ▶ 82% of stations are improved

Conclusions

- ► The ASCAT SDS appears to be provide an accurate observation of changes in near-surface soil moisture
- Good temporal fit to in situ soil moisture observations at the SMOSMANIA sites
- ► Good temporal fit to soil moisture simulated by SIM over France
- Assimilation into SIM reduces the dry bias associated with the biased precipitation forcing
 - Reduces the bias in the soil moisture, water budget, and river discharge
 -but, is it doing this for the right reasons???
- ► Land-surface models are a valuable tool for evaluating novel remotely sensed soil moisture products

Clara Draper clara.draper@nasa.gov Bldg 33, Rm C-221

For further details see H-SAF report: http://hsaf.meteoam.it/documents/reference/HSAF_AS_09_ 01_report.pdf